Changes for page Social Robot
Last modified by Sofia Vlachopanou on 2025/04/24 23:04
From version 4.2
edited by Nikolaos Soumpeniotis
on 2025/03/01 20:34
on 2025/03/01 20:34
Change comment:
There is no comment for this version
To version 4.3
edited by Nikolaos Soumpeniotis
on 2025/03/01 20:34
on 2025/03/01 20:34
Change comment:
There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -12,7 +12,7 @@ 12 12 (% style="font-size: 11pt; font-variant: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(33, 33, 33); background-color: rgb(255, 255, 255); font-weight: 400; font-style: normal; text-decoration: none" %)Another important technology to consider is Cloud Computing, which enables access to external libraries, enhancing the robot’s ability to interact by enriching dialogues. Additionally, cloud computing allows for real-time monitoring of the robot’s interactions and facilitates adaptive decision-making when needed [1]. 13 13 14 14 (% style="line-height:1.38; margin-top:16px; margin-bottom:16px" %) 15 -(% style="font-size: 11pt; font-variant: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(33, 33, 33); background-color: rgb(255, 255, 255); font-weight: 400; font-style: normal; text-decoration: none" %) Anotherimportant aspect of our system is speech recognition, which begins with signal processing through feature extraction. Feature extraction transforms raw audio into a format that machines can process, typically using spectrograms. Spectrograms provide a visual representation of sound frequency over time.15 +(% style="font-size: 11pt; font-variant: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(33, 33, 33); background-color: rgb(255, 255, 255); font-weight: 400; font-style: normal; text-decoration: none" %)Equally important aspect of our system is speech recognition, which begins with signal processing through feature extraction. Feature extraction transforms raw audio into a format that machines can process, typically using spectrograms. Spectrograms provide a visual representation of sound frequency over time. 16 16 17 17 (% style="line-height:1.38; margin-top:16px; margin-bottom:16px" %) 18 18 (% style="font-size: 11pt; font-variant: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(33, 33, 33); background-color: rgb(255, 255, 255); font-weight: 400; font-style: normal; text-decoration: none" %)After the feature extraction, Deep Neural Networks (DNNs) play a crucial role in mapping these features to words.Additionally, Convolutional Neural Networks (CNNs) are often utilized to process spectrograms, helping to extract meaningful spatial patterns from the data [3].